\(\int \frac {(A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^3} \, dx\) [127]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 38, antiderivative size = 85 \[ \int \frac {(A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^3} \, dx=-\frac {(3 A+7 B) \sec ^3(e+f x) (c-c \sin (e+f x))^{3/2}}{15 a^3 c f}-\frac {(A-B) \sec ^5(e+f x) (c-c \sin (e+f x))^{7/2}}{5 a^3 c^3 f} \]

[Out]

-1/15*(3*A+7*B)*sec(f*x+e)^3*(c-c*sin(f*x+e))^(3/2)/a^3/c/f-1/5*(A-B)*sec(f*x+e)^5*(c-c*sin(f*x+e))^(7/2)/a^3/
c^3/f

Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 85, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.079, Rules used = {3046, 2934, 2752} \[ \int \frac {(A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^3} \, dx=-\frac {(A-B) \sec ^5(e+f x) (c-c \sin (e+f x))^{7/2}}{5 a^3 c^3 f}-\frac {(3 A+7 B) \sec ^3(e+f x) (c-c \sin (e+f x))^{3/2}}{15 a^3 c f} \]

[In]

Int[((A + B*Sin[e + f*x])*Sqrt[c - c*Sin[e + f*x]])/(a + a*Sin[e + f*x])^3,x]

[Out]

-1/15*((3*A + 7*B)*Sec[e + f*x]^3*(c - c*Sin[e + f*x])^(3/2))/(a^3*c*f) - ((A - B)*Sec[e + f*x]^5*(c - c*Sin[e
 + f*x])^(7/2))/(5*a^3*c^3*f)

Rule 2752

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[b*(g*C
os[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^(m - 1)/(f*g*(m - 1))), x] /; FreeQ[{a, b, e, f, g, m, p}, x] && Eq
Q[a^2 - b^2, 0] && EqQ[2*m + p - 1, 0] && NeQ[m, 1]

Rule 2934

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> Simp[(-(b*c + a*d))*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*(p +
 1))), x] + Dist[b*((a*d*m + b*c*(m + p + 1))/(a*g^2*(p + 1))), Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*
x])^(m - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, -1] && LtQ[p, -1]

Rule 3046

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a^m*c^m, Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m)*(A + B
*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && I
ntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0, n, m] || LtQ[m, n, 0]))

Rubi steps \begin{align*} \text {integral}& = \frac {\int \sec ^6(e+f x) (A+B \sin (e+f x)) (c-c \sin (e+f x))^{7/2} \, dx}{a^3 c^3} \\ & = -\frac {(A-B) \sec ^5(e+f x) (c-c \sin (e+f x))^{7/2}}{5 a^3 c^3 f}+\frac {(3 A+7 B) \int \sec ^4(e+f x) (c-c \sin (e+f x))^{5/2} \, dx}{10 a^3 c^2} \\ & = -\frac {(3 A+7 B) \sec ^3(e+f x) (c-c \sin (e+f x))^{3/2}}{15 a^3 c f}-\frac {(A-B) \sec ^5(e+f x) (c-c \sin (e+f x))^{7/2}}{5 a^3 c^3 f} \\ \end{align*}

Mathematica [A] (verified)

Time = 2.14 (sec) , antiderivative size = 89, normalized size of antiderivative = 1.05 \[ \int \frac {(A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^3} \, dx=-\frac {2 (3 A+2 B+5 B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{15 a^3 f \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^5} \]

[In]

Integrate[((A + B*Sin[e + f*x])*Sqrt[c - c*Sin[e + f*x]])/(a + a*Sin[e + f*x])^3,x]

[Out]

(-2*(3*A + 2*B + 5*B*Sin[e + f*x])*Sqrt[c - c*Sin[e + f*x]])/(15*a^3*f*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(
Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^5)

Maple [A] (verified)

Time = 0.64 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.76

method result size
default \(\frac {2 c \left (\sin \left (f x +e \right )-1\right ) \left (5 B \sin \left (f x +e \right )+3 A +2 B \right )}{15 a^{3} \left (1+\sin \left (f x +e \right )\right )^{2} \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}\) \(65\)

[In]

int((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^3,x,method=_RETURNVERBOSE)

[Out]

2/15*c/a^3*(sin(f*x+e)-1)/(1+sin(f*x+e))^2*(5*B*sin(f*x+e)+3*A+2*B)/cos(f*x+e)/(c-c*sin(f*x+e))^(1/2)/f

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 77, normalized size of antiderivative = 0.91 \[ \int \frac {(A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^3} \, dx=\frac {2 \, {\left (5 \, B \sin \left (f x + e\right ) + 3 \, A + 2 \, B\right )} \sqrt {-c \sin \left (f x + e\right ) + c}}{15 \, {\left (a^{3} f \cos \left (f x + e\right )^{3} - 2 \, a^{3} f \cos \left (f x + e\right ) \sin \left (f x + e\right ) - 2 \, a^{3} f \cos \left (f x + e\right )\right )}} \]

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^3,x, algorithm="fricas")

[Out]

2/15*(5*B*sin(f*x + e) + 3*A + 2*B)*sqrt(-c*sin(f*x + e) + c)/(a^3*f*cos(f*x + e)^3 - 2*a^3*f*cos(f*x + e)*sin
(f*x + e) - 2*a^3*f*cos(f*x + e))

Sympy [F(-1)]

Timed out. \[ \int \frac {(A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^3} \, dx=\text {Timed out} \]

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))**(1/2)/(a+a*sin(f*x+e))**3,x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 505 vs. \(2 (77) = 154\).

Time = 0.31 (sec) , antiderivative size = 505, normalized size of antiderivative = 5.94 \[ \int \frac {(A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^3} \, dx=\frac {2 \, {\left (\frac {2 \, B {\left (\sqrt {c} + \frac {5 \, \sqrt {c} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {3 \, \sqrt {c} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {10 \, \sqrt {c} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} + \frac {3 \, \sqrt {c} \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}} + \frac {5 \, \sqrt {c} \sin \left (f x + e\right )^{5}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{5}} + \frac {\sqrt {c} \sin \left (f x + e\right )^{6}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{6}}\right )}}{{\left (a^{3} + \frac {5 \, a^{3} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {10 \, a^{3} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {10 \, a^{3} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} + \frac {5 \, a^{3} \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}} + \frac {a^{3} \sin \left (f x + e\right )^{5}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{5}}\right )} \sqrt {\frac {\sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 1}} + \frac {3 \, A {\left (\sqrt {c} + \frac {3 \, \sqrt {c} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {3 \, \sqrt {c} \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}} + \frac {\sqrt {c} \sin \left (f x + e\right )^{6}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{6}}\right )}}{{\left (a^{3} + \frac {5 \, a^{3} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {10 \, a^{3} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {10 \, a^{3} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} + \frac {5 \, a^{3} \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}} + \frac {a^{3} \sin \left (f x + e\right )^{5}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{5}}\right )} \sqrt {\frac {\sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 1}}\right )}}{15 \, f} \]

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^3,x, algorithm="maxima")

[Out]

2/15*(2*B*(sqrt(c) + 5*sqrt(c)*sin(f*x + e)/(cos(f*x + e) + 1) + 3*sqrt(c)*sin(f*x + e)^2/(cos(f*x + e) + 1)^2
 + 10*sqrt(c)*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 3*sqrt(c)*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 + 5*sqrt(c)*
sin(f*x + e)^5/(cos(f*x + e) + 1)^5 + sqrt(c)*sin(f*x + e)^6/(cos(f*x + e) + 1)^6)/((a^3 + 5*a^3*sin(f*x + e)/
(cos(f*x + e) + 1) + 10*a^3*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 10*a^3*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 +
 5*a^3*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 + a^3*sin(f*x + e)^5/(cos(f*x + e) + 1)^5)*sqrt(sin(f*x + e)^2/(cos
(f*x + e) + 1)^2 + 1)) + 3*A*(sqrt(c) + 3*sqrt(c)*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 3*sqrt(c)*sin(f*x + e)
^4/(cos(f*x + e) + 1)^4 + sqrt(c)*sin(f*x + e)^6/(cos(f*x + e) + 1)^6)/((a^3 + 5*a^3*sin(f*x + e)/(cos(f*x + e
) + 1) + 10*a^3*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 10*a^3*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 5*a^3*sin(f
*x + e)^4/(cos(f*x + e) + 1)^4 + a^3*sin(f*x + e)^5/(cos(f*x + e) + 1)^5)*sqrt(sin(f*x + e)^2/(cos(f*x + e) +
1)^2 + 1)))/f

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 368 vs. \(2 (77) = 154\).

Time = 0.41 (sec) , antiderivative size = 368, normalized size of antiderivative = 4.33 \[ \int \frac {(A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^3} \, dx=\frac {\sqrt {2} {\left (3 \, A \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + 7 \, B \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + \frac {20 \, B {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1} + \frac {30 \, A {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2}} + \frac {10 \, B {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2}} + \frac {60 \, B {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{3} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{3}} + \frac {15 \, A {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{4} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{4}} + \frac {15 \, B {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{4} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{4}}\right )} \sqrt {c}}{30 \, a^{3} f {\left (\frac {\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1} + 1\right )}^{5}} \]

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^3,x, algorithm="giac")

[Out]

1/30*sqrt(2)*(3*A*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e)) + 7*B*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e)) + 20*B*(cos(-1
/4*pi + 1/2*f*x + 1/2*e) - 1)*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1) + 30*A*
(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^2*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1
)^2 + 10*B*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^2*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))/(cos(-1/4*pi + 1/2*f*x +
 1/2*e) + 1)^2 + 60*B*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^3*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))/(cos(-1/4*pi
+ 1/2*f*x + 1/2*e) + 1)^3 + 15*A*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^4*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))/(c
os(-1/4*pi + 1/2*f*x + 1/2*e) + 1)^4 + 15*B*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^4*sgn(sin(-1/4*pi + 1/2*f*x +
 1/2*e))/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1)^4)*sqrt(c)/(a^3*f*((cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)/(cos(-1/
4*pi + 1/2*f*x + 1/2*e) + 1) + 1)^5)

Mupad [B] (verification not implemented)

Time = 18.18 (sec) , antiderivative size = 479, normalized size of antiderivative = 5.64 \[ \int \frac {(A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^3} \, dx=\frac {{\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}\,\sqrt {c-c\,\left (\frac {{\mathrm {e}}^{-e\,1{}\mathrm {i}-f\,x\,1{}\mathrm {i}}\,1{}\mathrm {i}}{2}-\frac {{\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}\,1{}\mathrm {i}}{2}\right )}\,\left (\frac {8\,B}{5\,a^3\,f}-\frac {16\,A-8\,B}{10\,a^3\,f}+\frac {\left (A\,16{}\mathrm {i}-B\,8{}\mathrm {i}\right )\,1{}\mathrm {i}}{10\,a^3\,f}\right )}{\left ({\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}-\mathrm {i}\right )\,{\left ({\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}+1{}\mathrm {i}\right )}^5}-\frac {{\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}\,\sqrt {c-c\,\left (\frac {{\mathrm {e}}^{-e\,1{}\mathrm {i}-f\,x\,1{}\mathrm {i}}\,1{}\mathrm {i}}{2}-\frac {{\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}\,1{}\mathrm {i}}{2}\right )}\,\left (\frac {4\,B}{3\,a^3\,f}-\frac {16\,A-16\,B}{30\,a^3\,f}+\frac {\left (A\,80{}\mathrm {i}-B\,120{}\mathrm {i}\right )\,1{}\mathrm {i}}{30\,a^3\,f}\right )}{\left ({\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}-\mathrm {i}\right )\,{\left ({\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}+1{}\mathrm {i}\right )}^3}-\frac {{\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}\,\sqrt {c-c\,\left (\frac {{\mathrm {e}}^{-e\,1{}\mathrm {i}-f\,x\,1{}\mathrm {i}}\,1{}\mathrm {i}}{2}-\frac {{\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}\,1{}\mathrm {i}}{2}\right )}\,\left (-\frac {B\,1{}\mathrm {i}}{a^3\,f}+\frac {A\,16{}\mathrm {i}-B\,16{}\mathrm {i}}{40\,a^3\,f}+\frac {A\,80{}\mathrm {i}-B\,80{}\mathrm {i}}{40\,a^3\,f}+\frac {\left (160\,A-120\,B\right )\,1{}\mathrm {i}}{40\,a^3\,f}\right )}{\left ({\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}-\mathrm {i}\right )\,{\left ({\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}+1{}\mathrm {i}\right )}^4}-\frac {B\,{\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}\,\sqrt {c-c\,\left (\frac {{\mathrm {e}}^{-e\,1{}\mathrm {i}-f\,x\,1{}\mathrm {i}}\,1{}\mathrm {i}}{2}-\frac {{\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}\,1{}\mathrm {i}}{2}\right )}\,8{}\mathrm {i}}{3\,a^3\,f\,\left ({\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}-\mathrm {i}\right )\,{\left ({\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}+1{}\mathrm {i}\right )}^2} \]

[In]

int(((A + B*sin(e + f*x))*(c - c*sin(e + f*x))^(1/2))/(a + a*sin(e + f*x))^3,x)

[Out]

(exp(e*1i + f*x*1i)*(c - c*((exp(- e*1i - f*x*1i)*1i)/2 - (exp(e*1i + f*x*1i)*1i)/2))^(1/2)*((8*B)/(5*a^3*f) -
 (16*A - 8*B)/(10*a^3*f) + ((A*16i - B*8i)*1i)/(10*a^3*f)))/((exp(e*1i + f*x*1i) - 1i)*(exp(e*1i + f*x*1i) + 1
i)^5) - (exp(e*1i + f*x*1i)*(c - c*((exp(- e*1i - f*x*1i)*1i)/2 - (exp(e*1i + f*x*1i)*1i)/2))^(1/2)*((4*B)/(3*
a^3*f) - (16*A - 16*B)/(30*a^3*f) + ((A*80i - B*120i)*1i)/(30*a^3*f)))/((exp(e*1i + f*x*1i) - 1i)*(exp(e*1i +
f*x*1i) + 1i)^3) - (exp(e*1i + f*x*1i)*(c - c*((exp(- e*1i - f*x*1i)*1i)/2 - (exp(e*1i + f*x*1i)*1i)/2))^(1/2)
*((A*16i - B*16i)/(40*a^3*f) - (B*1i)/(a^3*f) + (A*80i - B*80i)/(40*a^3*f) + ((160*A - 120*B)*1i)/(40*a^3*f)))
/((exp(e*1i + f*x*1i) - 1i)*(exp(e*1i + f*x*1i) + 1i)^4) - (B*exp(e*1i + f*x*1i)*(c - c*((exp(- e*1i - f*x*1i)
*1i)/2 - (exp(e*1i + f*x*1i)*1i)/2))^(1/2)*8i)/(3*a^3*f*(exp(e*1i + f*x*1i) - 1i)*(exp(e*1i + f*x*1i) + 1i)^2)